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1 Introduction26

The decline in snowpack across the western United States is one of the most27

pressing threats posed by climate change to regional economies and liveli-28

hoods (Mankin and Diffenbaugh, 2015; Mote et al, 2018; Xiao et al, 2018;29

Huning and AghaKouchak, 2020). Spring snowmelt is critical for regional wa-30

ter managers—more than half of annual runoff in the western US derives from31

snowpack (Li et al, 2017). Snow plays a central role in local and regional32

climates and ecosystems, from its cooling effect on temperatures to its mod-33

ulation of the timing and intensify of streamflow and soil moisture anomalies34

(Walsh et al, 1982; Marks and Dozier, 1992; Bales et al, 2006; Maurer and35

Bowling, 2014; Li et al, 2017). The observed decline in snowpack is the result36

of several interacting factors including shifts in the timing and intensity of sea-37

sonal precipitation and temperature patterns, each of which are exacerbated38

by warming temperature trends and the attendant changes in accumulation39

and ablation (Pierce et al, 2008; Kapnick and Hall, 2012; Pederson et al, 2013;40

Klos et al, 2014; Xiao et al, 2018). These snowpack deficits are of a magnitude41

and extent unprecedented in the observational period (McCabe and Wolock,42

2009; Mote et al, 2018; Schoenemann et al, 2020) and are expected to worsen43

in the future (Fyfe et al, 2017; Marshall et al, 2019; Siler et al, 2019).44

Yet it remains difficult to observe snowpack uniformly across large spatial45

domains. Spatially-continuous high-resolution maps of snowpack are therefore46

a challenge to produce, particularly in areas with complex terrain (Erickson47

et al, 2005; Meromy et al, 2013). Different sensor types and measurement48

strategies focus on distinct—if related—facets of the system, such as snow49

water equivalent (SWE), snow-covered area, and snow depth. Each has unique50

uncertainties, coverage, and observational spans, making them a challenge to51

integrate (Dozier et al, 2016; Dong, 2018). In most locations the observational52

record only extends for a few decades into the past (e.g. Serreze et al, 1999),53

making it difficult to place observed variability in a long-term context.54

An array of modeling approaches provides ways to estimate gaps in the55

observational record and produce continuous spatiotemporal data. From stan-56

dalone hydrological bucket models to the complex land-surface components of57

Earth system models, snowpack simulations attempt to capture the interact-58

ing drivers of snowpack variability across spatial and temporal scales. These59

models allow for assessments of the mechanistic uncertainty of these drivers60

and uncertainty in their observations (Clark et al, 2011). Even simple models61

provide useful information for constraining noisy observations (Broxton et al,62

2016a). Although the skill of current-generation snow models is high overall,63

issues remain in the representation of processes like ablation at near-freezing64

temperatures (Rutter et al, 2009; Broxton et al, 2016b; Krinner et al, 2018).65

Regional and global snow models must run on daily to sub-daily time scales, so66

a reduction in spatial resolution may be required to minimize computational67

costs. This tradeoff makes accurate spatial modeling of snowpack difficult, even68

when the underlying process models are physically appropriate.69
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Snow accumulation and ablation is sensitive to local topography, partic-70

ularly in the mountainous regions that receive the most snowfall (Anderson71

et al, 2014; Tennant et al, 2017; Jennings and Molotch, 2019). The resolution72

of most simulations smooth this topography, eliminating mountain peaks and73

introducing temperature biases that prevent snow from accumulating where74

it otherwise would (Rhoades et al, 2018). The tendency for snow models to75

underpredict accumulated SWE has been well documented. Xu et al (2019)76

showed that increasing model resolution from 0.44◦to 0.11◦increases the accu-77

racy of simulated SWE by 35%. Such low-snow biases in regional and global78

snow simulations preclude their use by local water managers without correc-79

tions to this fundamental scale mismatch. Some form of downscaling is required80

to estimate fine-resolution snowpack maps from coarser-resolution simulation81

outputs (McGinnis, 1997; Pons et al, 2010; Tryhorn and Degaetano, 2013).82

However, this is increasingly accomplished via an additional high-resolution83

regional climate model or by forcing a hydrological model with atmospheric84

forcing data downscaled by constructed analogue methods, both of which re-85

quire data on hourly to daily time scales, making them computationally in-86

feasible for assessing variability on time horizons greater than a few decades87

(Rhoades et al, 2018; Chegwidden et al, 2019; Fiddes et al, 2019; Ikeda et al,88

2021).89

Non-local “pattern-based” statistical downscaling methods are an effective90

alternative to quickly generate fine-scale, long-term ensembles from existing91

coarse-resolution climate model simulations. Pattern-based methods decom-92

pose observed and simulated climate fields into a limited number of spa-93

tiotemporal patterns or “modes of variability,” finding statistical relationships94

that translate one set of modes into the other (Bretherton et al, 1992; Tip-95

pett et al, 2008; Simon et al, 2013; Maraun and Widmann, 2018). Because96

they find associations between internally-consistent predictor and predictand97

fields, pattern-based statistical methods share some benefits with more compu-98

tationally expensive dynamic downscaling methods that preserve the physical99

consistency of the simulated climate fields. These methods are “non-local” in100

that they focus on associations between large-scale patterns, rather than local101

associations between an observed location and the overlapping simulation grid102

cell. The simulation grid cell that best captures the observed variability at103

a given location is often not the corresponding local grid cell (van den Dool104

et al, 2000; Maraun and Widmann, 2015; Nicholson et al, 2019). While local105

mean conditions reflect local terrain, year-to-year departures from the mean106

often reflect teleconnections to remote, large-scale atmosphere-ocean variabil-107

ity (van den Dool et al, 2000; Hewitt et al, 2018). Anchoring the downscaling108

process in these large-scale physical mechanisms leads to a higher signal to109

noise ratio (Benestad et al, 2015), ensuring the estimated statistical relation-110

ships are internally consistent and likely to remain stable over time.111

Here, we explore pattern-based statistical methods for downscaling inter-112

annual variability in March mean SWE across the western United States.113

We find that a few leading modes—present in observations, simulations, and114

reanalyses—capture the majority of snowpack variability in this domain. We115
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compare several related regression methods for finding associations between116

observed and simulated patterns and show that even simple linear models117

perform well under cross validation. These methods yield accurate high reso-118

lution maps that correct mean and variance biases in domain-wide simulated119

SWE. Methods that use large-scale patterns as both predictors and predic-120

tands perform better than those that use those patterns on only one side of121

the regression equation, and all pattern-based methods are superior to a local122

“delta change” approach. These findings suggest that pattern-based methods123

are indeed appropriate for downscaling interannual snowpack variability, and124

that employing physically-meaningful large-scale patterns is more important125

for accuracy than the details of any particular downscaling method. Our find-126

ings here demonstrate the utility of applying these approaches where more127

computational- or data-intensive methods are impractical, including paleocli-128

mate modeling and data assimilation.129

2 Data130

2.1 Observations131

We focus on a domain between 125◦W–102◦W and 31◦N–49◦N, covering the132

western US states of Arizona, California, Colorado, Idaho, Montana, Nevada,133

NewMexico, Oregon, Utah, Washington, andWyoming. Observed March SWE134

was calculated from the University of Arizona (UA) Daily 4km SWE data135

product, a gridded record of daily SWE and snow depth for water years 1982-136

2017 at 4km resolution across the conterminous US (Broxton et al, 2019).137

March mean SWE has been shown to approximate the more commonly used138

April 1st SWE measure, but is less sensitive to sampling variability than a sin-139

gle daily value (Mankin and Diffenbaugh, 2015; Ye, 2019). The UA SWE data140

were based on a simple ablation and accumulation model driven by gridded141

daily PRISM temperature and precipitation fields (Daly et al, 2008), rescaled142

by relative anomalies from thousands of in situ observations from the SNO-143

TEL and COOP networks (Broxton et al, 2016a; Zeng et al, 2018). We also144

acquired the raw PRISM temperature and precipitation fields to assess local145

relationships between SWE accumulation and seasonal hydroclimate variabil-146

ity.147

2.2 Reanalyses and Simulations148

Modeled SWE for the downscaling experiments was derived from the CERA149

20th century (CERA-20C) reanalysis product (variable name SD) (Laloyaux150

et al, 2018). CERA-20C is a long-term reanalysis product that uses the Euro-151

pean Centre for Medium-Range Weather Forecast (ECMWF) system spanning152

1901-2010 at six-hourly temporal resolution and ∼1◦spatial resolution. It as-153

similates sea level pressure pressure and ocean temperature observations from154
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across this period in order to avoid temporal inconsistencies from the later155

introduction of, for example, satellite observations. We also acquired monthly156

sea surface temperatures and 500mb geopotential heights from the same re-157

analysis to assess large-scale atmosphere-ocean teleconnections. We used the158

means of the 10-member ensemble for all analyses as the individual ensemble159

members showed few major differences during the period of interest.160

As a preliminary evaluation of whether these methods could be applied to161

free-running paleoclimate model simulations, we also analyzed outputs from162

the CCSM4 Last Millennium simulation (Landrum et al, 2013) and the CESM163

Last Millennium Ensemble (Otto-Bliesner et al, 2016), their associated 20th164

century extensions (variable name H2OSNO, CMIP5 standard name SNW ),165

and version 3 of the NOAA-CIRES-DOE 20th Century Reanalysis (20CRv3)166

(variable name WEASD) (Slivinski et al, 2020) in order to assess modes of167

snowpack variability in free-running Earth system models of different native168

resolutions (∼1◦and ∼2◦) and reanalysis data from different modeling groups,169

respectively. Herein, we collectively refer to both reanalyses and free-running170

climate models as “simulations” for simplicity.171

Fig. 1 Mean March snow water equivalent (SWE) in mm from A) UA 4km daily SWE ob-
servations (Broxton et al, 2019), B) CERA-20C reanalysis (Laloyaux et al, 2018), C) CCSM4
Last Millennium simulation (Landrum et al, 2013). Note the scale of the observations differs
from the simulations by nearly an order of magnitude due to differences in model resolution.
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2.3 Preprocessing172

Both observed and simulated data were truncated to the overlapping period173

of 1982-2010 and aggregated from daily to monthly timescales by calculating174

the average March SWE value for each grid cell and year (Figure 1). We used175

bilinear interpolation to resample each of the large-scale simulation outputs to176

a common 1◦grid. We also resampled the 4km snow observations to an 8km177

grid to decrease computational costs without degrading the high-resolution178

spatial signal. Grid cells that experienced no SWE accumulation throughout179

the observational period were masked from successive analyses.180

3 Methods181

3.1 Estimating modes of snowpack variability182

We isolated key modes of observed snowpack variability using principal com-183

ponents analysis (PCA). The observed and simulated data were area weighted184

to prevent undue influence from grid cells at higher latitudes by multiplying185

the observations at each grid cell by the square root of of the cosine of the186

cell’s latitude in radians (Livezey and Smith, 1999). We calculated interannual187

SWE anomalies by mean-centering the data before analysis. We do not use188

standardized or detrended anomalies in order to preserve spatial patterns of189

variance across the field (Zeng et al, 2018).190

The PCA results in a set of orthogonal principal component time series191

or “amplitudes,” eigenvalues representing the variation accounted for by each192

amplitude time series, and eigenvectors or “empirical orthogonal functions”193

(EOFs) mapping the amplitude time series back onto the original spatial grid.194

We standardized the PC amplitudes to unit variance and reweighted the eigen-195

vectors by the square root of their corresponding eigenvalues to give higher196

weight to the leading spatial modes (Hannachi et al, 2007). Thus, the origi-197

nal dataset could be reconstructed by multiplying each amplitude time series198

by its corresponding EOF spatial pattern, summing the results to get SWE199

anomalies, and adding in the sample mean of the grid cell. Using only a subset200

of these spatiotemporal patterns to reconstruct the original SWE field effec-201

tively removes “noise” associated with the higher order modes, limiting the202

data to a subspace representing only the most important axes of variation.203

The truncation level k for each field was selected by cross validation (see sec-204

tion 3.3).205

We used several techniques to examine the leading spatiotemporal modes.206

We visualized the EOF modes by calculating the Pearson correlation coeffi-207

cient between each PC amplitude time series and each grid cell’s original time208

series. We explored potential atmosphere-ocean teleconnections by calculat-209

ing the correlation between each PC amplitude and average October-March210

global sea surface temperatures (SSTs) and 500mb geopotential heights from211

the CERA-20C reanalysis (Laloyaux et al, 2018) and regional temperature212
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and precipitation observations from PRISM (Daly et al, 2008), assessing sta-213

tistically significant correlations using the false discovery rate (Wilks, 2006,214

2016). We also applied a varimax rotation to the leading PCs to examine re-215

gional response patterns (Richman, 1986), although unrotated PCs were used216

for downscaling due to their favorable statistical properties and similarity to217

the rotated PCs.218

Although we attempted to find physically-meaningful patterns where they219

were present, we did not consider the lack of physical interpretation to be a cri-220

terion for excluding a particular mode from the downscaling model. We ensured221

only that the retained modes collectively reflected large-scale atmosphere-222

ocean variability. In other words, the choice of truncation level k and the223

combined set of coupled patterns were more important to our downscaling224

process than the physical interpretation of any particular mode.225

3.2 Pattern-based downscaling226

Pattern-based downscaling models use some combination of observed and sim-227

ulated PC time series to predict one climate field from another. There are mul-228

tiple statistical methods capable of doing so, many of which are variants on229

multiple linear regression (Bretherton et al, 1992; Tippett et al, 2008). They230

generally differ in whether they maximize explained variance in the observa-231

tions as opposed to the shared variance between observations and simulations,232

and whether they use PCs as predictors, predictands, or both (Table 1). We233

compared four downscaling methods that spanned this methodological spec-234

trum along with an additional “local” null model.235

Table 1 Pattern-based downscaling methods: canonical correlation analysis (CCA), princi-
pal components regression (PCR), principal components regression via generalized additive
models (PCR-GAM), and empirical orthogonal teleconnections (EOT). Either the predic-
tors (x), predictands (y), or both are subjected to PCA prefiltering prior to downscaling.
Asymmetric models seek to explain variance of the predictands while symmetric models
explain the shared correlation. Cross-validated performance metrics for the best-performing
model of each class are the space-time root mean square error and the Pearson correlation
between observed and simulated domain-wide SWE. The additive delta change approach us-
ing bilinearly interpolated anomalies is also including here as a local baseline for the nonlocal
downscaling approaches.

Method PCA Prefiltering Symmetric RMSE Correlation

CCA x, y yes 41.4 0.940
PCR x, y no 43.1 0.949
PCR-GAM x, y no 42.7 0.932
EOT y no 48.5 0.918
DELTA none no 53.2 0.912

Canonical correlation analysis (CCA) is one of the most common ap-236

proaches to coupled pattern analysis (Maraun and Widmann, 2018). It yields237
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a set of patterns that maximizes the shared correlation between the predictor238

and predictand fields (Tippett et al, 2008). We applied CCA to the leading239

predictor and predictand modes of variability to regularize the model and240

make it computationally tractable (Barnett and Preisendorfer, 1987; Brether-241

ton et al, 1992; Benestad, 2001; Tippett et al, 2008). Downscaling models are242

prone to overfitting on shorter calibration windows, so this PCA prefiltering243

step increases the signal-to-noise ratio to ensure the resulting patterns are244

statistically robust.245

Principal components regression (PCR) is a similar method that uses the246

PC time series in independent multiple linear regressions. Traditional PCR fits247

a different model to the predictor PCs for each predictand grid cell, although248

here we take the more efficient approach of using predictand PCs directly249

(Benestad et al, 2015). Because the PC time series are mutually uncorrelated250

each predictand PC can be modeled independently and there is no concern251

of multicollinearity. PCR is asymmetric in that it only explains the variance252

of the predictands, contrary to CCA, although both methods are linear and253

are equivalent under certain conditions (Tippett et al, 2008). We also tested254

a nonlinear variant of PCR which replaces the linear models with penalized255

piecewise polynomials estimated in a generalized additive model (PCR-GAM).256

Empirical orthogonal teleconnections (EOT) finds a set of grid cells that257

explain the most variance in the observation domain by fitting a linear model258

between all pairs of predictor and predictand grid cells (van den Dool et al,259

2000; Appelhans et al, 2015). The simulation grid cell that predicts the most260

variance in all of the predictand grid cells is selected as the first pattern. Then261

the algorithm is run again on the residuals from the regressions on the first262

pattern, and the process is repeated until a set number of patterns is reached.263

EOT yields more localized spatial patterns, similar to rotated EOFs, than264

methods that use predictor and predictand PCs directly. Although PCA can265

be used to denoise both fields prior to the analysis, EOT focuses on the grid-266

cell level time series and is not constrained to fit the large scale patterns used267

by CCA and PCR.268

We compared these non-local pattern-based techniques to a simple null269

model using interpolated simulation anomalies. This “delta change” model in-270

volved calculating the yearly simulated SWE anomalies relative to the mean271

fields, bilinearly interpolating the low-resolution simulated anomalies to the272

high resolution of the observations, and combining the interpolated anomalies273

with the high resolution observed mean. We tested delta change models with274

both additive and multiplicative anomalies by either subtracting the simulated275

mean and adding the observed mean or by dividing by the simulated mean276

and multiplying by the observed mean, respectively. While conceptually sim-277

ilar to the pattern-based methods, the delta change approach uses only local278

information and cannot correct any spatial biases caused by the smoothed to-279

pography of the simulation. We used these model to assess the added value of280

the non-local downscaling approaches relative to these common local methods.281

All downscaling methods were implemented in R version 4.0.3 (R Core282

Team, 2020) using the packages stars, tidyverse, mgcv, remote, and MuMIN283



Pattern-based downscaling of snowpack variability in the western United States 9

(Wood, 2006; Appelhans et al, 2015; Wickham et al, 2019; Bartoń, 2020;284

Pebesma, 2021). Code for reproducing the main analysis and figures is avail-285

able at https://github.com/nick-gauthier/tidyEOF.286

3.3 Cross Validation287

Each of the pattern-based downscaling methods required the number of cou-288

pled patterns to be defined by a hyperparameter k. The methods that used289

PCA prefiltering also required selection of a truncation level for the predictor290

and predictand PCs. We used a five-fold cross validation routine to tune the291

hyperparameters of each model, fitting and predicting from models with all292

possible combinations of up to ten predictor patterns kx, predictand patterns293

ky, and coupled patterns kxy, with the constraint that kxy ≤ min(kx, ky).294

We divided the 29-year calibration period into five contiguous folds, four of295

which contained six years and one of which contained five. We held out one fold296

at a time, fitting each model and parameter combination on the remaining folds297

and using them to predict the held out fold. The entire modeling workflow—298

anomaly calculation, PCA truncation, and model fitting—was repeated for299

each training and testing fold independently to prevent leaking information300

among the folds (Van Den Dool, 1987; Livezey and Smith, 1999; Smerdon301

et al, 2010). We repeated this process until each fold had been used four302

times for training and once for testing, after which we combined the test folds303

into a single 29 year sequence from which we calculated the prediction error304

against the observed sequence. It is often preferable to use a nested cross305

validation routine when doing model selection and performance assessment306

simultaneously, but we did not do so in this case because our sample size was307

limited and the different models were of broadly the same type with a low308

number of similar hyperparameters (Wainer and Cawley, 2018).309

We used two metrics to assess the skill of each model and parameter combi-310

nation. First we examined the correlation between the observed and predicted311

domain-wide total SWE time series. We calculated total domain SWE by mul-312

tiplying each SWE value by the area of its grid cell and summing the result.313

We then assessed the local spatial skill of the downscaled product by calculat-314

ing the total space-time root mean square error (RMSE) between all observed315

and predicted grid cells. We selected the models and parameter combinations316

that maximized domain-wide correlation and minimized RMSE under cross317

validation, and refit the best performing model to the entire data series. We318

compared the predictions from this final model to the raw CERA-20C re-319

analysis to assess the added value of downscaling for correcting mean and320

variance biases in domain-wide SWE. We demonstrated the spatial skill of321

the model by comparing the spatial anomalies of observed, reanalysis, and322

downscaled fields during a known extreme year. To test its sensitivity to re-323

cent warming trends, we refit the best model holding out the years with the324

top 20% warmest October-March average temperatures in the PRISM obser-325

vations. We also compared these CERA-20C based reconstructions to models326
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using the NOAA-CIRES-DOE 20CRv3 reanalysis (Slivinski et al, 2020) as an327

alternative predictor to assess the sensitivity of the outputs to the specific328

reanalysis methodology.329

A downscaling model trained on reanalysis data must also be able to make330

predictions from unseen, free-running simulations to make skillful climate-331

change impact assessments beyond the observational period (Maraun and332

Widmann, 2018). As a proof-of-concept of the generalizability of the final333

model and EOF patterns, we used it to downscale additional 300-year sim-334

ulated snowpack sequences by projecting data from the CCSM4 and CESM335

Last Millennium simulations onto the reanalysis PC patterns. As these free-336

running simulations were not constrained to match the year-to-year evolution337

of the observations as were the reanalyses, the added value of downscaling was338

assessed through improvements in the mean and variance biases on a 50-year339

distributional basis.340

4 Results341

A limited set of climate modes explain the majority of observed and simulated342

March SWE variance. Four spatiotemporal patterns explain 76% of the ob-343

served variance in March snowpack over the western United States (Figure 2a).344

The leading ten patterns explain nearly 90% of the observed variance. These345

patterns represent recurring modes of spatiotemporal variability and are an346

efficient means of capturing the high dimensional spatiotemporal snowpack347

field in a limited subspace of patterns.348

Similar patterns are found in coarse-resolution simulations. The leading 10349

PCs of the 110 year CERA-20C reanalysis explain 96% of the variance in sim-350

ulated snowpack, and the leading four explain 89% of the variance (Figure 2b).351

These reanalysis PCs are associated with the same broad spatial patterns as352

the observed PCs, but the longer sample windows allows for greater separation353

between the leading modes than with the 36 year observational record.354

Large-scale snow patterns reflect orography and atmosphere-ocean variability.355

The spatial EOF patterns associated with the leading snowpack PCs exhibit356

clear relationships to regional precipitation and temperature (Figure 3) as well357

as global pressure systems and sea surface temperatures (Figure 4). EOF/PC1358

is a domain-wide signal with high loadings in the Rocky Mountains, Sierra359

Nevada, and Cascade ranges. It is associated with simultaneous cold and wet360

conditions (or vice versa) over the domain and anomalous pressure systems361

over northwestern North America. EOF/PC2 exhibits a north-south dipole362

pattern with opposite-sign loadings in the Cascades and northern Rockies363

and the Sierra Nevada and southern Rockies, respectively. Unlike EOF1, this364

pattern is associated the precipitation, not temperature, anomalies over the365

domain and a far more zonal geopotential height anomaly over North America.366

EOF3 is localized to the Rocky Mountains and is associated with domain-367

wide temperature anomalies and geopotential and SST dipoles over the north368
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Fig. 2 The leading four EOF spatial patterns expressed as the Pearson correlation coeffi-
cient between each PC time series and March snow water equivalent in (A) UA SWE obser-
vations (1982-2017) (Broxton et al, 2019), (B) CERA-20C reanalysis (1901-2010) (Laloyaux
et al, 2018), and (C) the CCSM4 Last-Millennium simulation and historical extension (850-
2005) (Landrum et al, 2013). These patterns represent between 76% and 90% of the variance
in their respective spatiotemporal fields.

Pacific. EOF4 is a domain-wide mode associated with temperature anomalies369

and SST and geopotential height anomalies off the Pacific coast and in the370

tropics. Although the SST correlations exhibit spatial structure resembling371

ENSO and other modes of Pacific SST variability (Figure 4b), none of these372

are significant during the 1982-2010 period (although the horseshoe-shaped373

PC3-SST and coastal PC4-SST patterns are significant in SST observations374

that extend to 2017 (Huang et al, 2017a)).375

Higher order PCs/EOFs beyond the leading four also show spatially co-376

herent variability. While these PC/EOF pairs may resemble physical climate377

patterns, they are not interpreted here as the orthogonality constraints may378

lead to mixed or otherwise poorly resolved patterns spread across multiple379

PCs. Given the small sample size, it can be difficult to distinguish such “de-380

generate multiplets” from proper modes (North et al, 1982). While the first two381

observed PCs are distinct modes of variability, PCs 3-4 and 5-10 are degen-382

erate multiplets that cannot be readily distinguished from one another given383
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Fig. 3 Pearson correlation coefficients between the leading four observed PC time series
and October–March (A) total precipitation and (B) average temperature from PRISM (Daly
et al, 2008) over the 1982-2017 period. Contour lines indicate regions of statistically signifi-
cant correlation with a false discovery rate below 0.1.

Fig. 4 Pearson correlation coefficients between the leading four observed PC time series
and October–March (A) 500mb geopotential height and (B) sea surface temperature from
CERA-20C (Laloyaux et al, 2018) over the 1982-2010 period. Contour lines indicate regions
of statistically significant correlation with a false discovery rate below 0.1.

the limited 36-year observational period (1982-2017). Likewise, the first four384

reanalysis PCs represent distinct modes while PCs 5-7 and 8-10 are degenerate385

multiplets. A varimax rotation of the leading ten PCs alleviates some of these386

concerns, yielding more discrete zones reflecting topographic interception of387

different directions of atmospheric flow. Regardless, that these patterns are388

present in reanalysis and simulation data from much longer time spans (1901-389
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Fig. 5 Cross validation results for the three CCA parameters after Smerdon et al (2010):
the number of predictor PCs kx, the number of predictand PCs ky , and the number of
coupled patterns kxy . (A)–(C) cross validation results for space-time root mean square
error in millimeters (lower is better). (D)–(E) correlation between observed and downscaled
total domain SWE (higher is better).

2010 and 840-2005, respectively) suggests the observed patterns are robust in390

time and can be used as anchoring points for a non-local downscaling approach.391

Downscaling with coupled patterns has higher cross-validated skill than similar392

local and non-local methods. CCA is the best-performing downscaling model393

under cross validation, with the lowest space-time root mean square error and394

effectively tied for the highest correlation with total western US SWE (Table395

1). The most important parameter for model skill is the number of coupled396

patterns kxy, while the precise number of prefiltering patterns kx and ky is less397

important as long as they are greater than or equal to the optimal number of398

coupled patterns (Figure 5). A CCA model with five coupled patterns maxi-399

mizes the domain-wide correlation, but even one coupled pattern yields a high400

correlation coefficient. Likewise, a model with seven coupled patterns is the401

most accurate in reconstructing the entire spatiotemporal field (lowest cross402

validated RMSE), but a five-pattern model also performs reasonably well.403

All models have comparable skill to CCA for domain-wide SWE correla-404

tions, yielding a cross validated correlation of around 0.9, but there is greater405

spread for space-time RMSE. Both PCR models perform similarly to CCA406

for domain-wide SWE correlation, but the spatial skill is degraded due to the407

asymmetrical relationships between the predictors and predictands. PCR and408

PCR-GAM models produced largely similar reconstructions, yet the nonlinear409
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Fig. 6 Comparison of CCA and EOT downscaling under five-fold cross validation. (A)
Space-time root mean square error, in millimeters of SWE, for increasing number of cou-
pled patterns. Lower RMSE corresponds to more accurate reconstructions. (B) Correlation
between observed and reconstructed total SWE over western North America. The dashed
horizontal line indicates the cross validated skill of the additive delta change model, a “local”
interpolation-based downscaling approach. The curves for the PCR and PCR-GAM models
(not shown) resemble those of the CCA model.

PCR-GAM consistently performs slightly worse than the linear PCR method410

due to its potential to overfit.411

EOT yielded spatial patterns similar to the coupled-pattern methods but412

with notably more instability under cross validation than the pattern methods413

because the base grid cell tended to vary between folds (Figure 6). All meth-414

ods are better than the delta change approach with additive anomalies, which415

performed similar to the pattern-based methods with only one or two pat-416

terns. The multiplicative delta change approach was by far the least effective,417

as the use of multiplicative anomalies introduced artifacts in years with un-418

usually high SWE over areas with SWE averages close to zero. These artifacts419

significantly degraded the overall temporal and spatial skill, and were partic-420

ularly severe under cross validation. These results support the interpretation421

that anchoring downscaling relationships in spatial patterns, rather than grid-422

cell level relationships, increases the robustness of the resulting downscaled423

predictions.424

Downscaling reduces spatial and temporal biases in simulated snowpack. Down-425

scaling the CERA-20C reanalysis with any of the above pattern-based methods426

considerably reduces spatial and temporal biases in the raw reanalysis. With-427

out downscaling, the CERA-20C reanalysis tends to underpredict domain-wide428

total SWE averages and overpredict their variance. CCA downscaling with five429

coupled patterns reduces this mean and variance bias relative to observations430

(Figure 7). By construction, pattern-based downscaling also improves the spa-431

tial structure of simulated SWE anomalies and removes spatial biases caused432

by the coarse resolution of the simulated topography in a way that interpolat-433

ing the simulated anomalies does not (Figure 8).434

The spatial skill of the best-performing CCA model does not appear to435

be sensitive to recent warming trends. Using a model fit on the 80% coolest436
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Fig. 7 Total Western US March SWE in teraliters (km3) from the CERA-20C reanalysis
with five-pattern CCA downscaling (black) and without (gray), compared to recent obser-
vations (red). Downscaling adds value to the raw reanalysis by increasing the mean and
decreasing the variance relative to observations.

years to predict the 20% warmest years in the calibration period (1992, 1999,437

2000, 20003, 2004, 2005) yields a space-time RMSE of 40.9mm, with virtually438

no spatial bias between the performance of this “cool” model and the full439

one. However, both models do tend to underestimate the total domain SWE440

deficits in the driest years, suggesting that while the pattern-based methods441

can represent recent warming trends in space, they may still be inheriting442

small temporal biases from the underlying reanalysis.443

Reconstructions driven instead by the NOAA-CIRES-DOE 20th century444

reanalysis are consistent with those downscaled from CERA-20C. The raw445

CERA-20C and 20CRv3 SWE fields have a domain-wide SWE correlation of446

0.90 and a space-time RMSE of 77mm, while the downscaled fields have a cor-447

relation of 0.88 and RMSE of 31mm, indicating that downscaling substantially448

improves the spatial coherence of the reanalysis data while leaving temporal449

coherence largely the same. Notably, the RMSE among the two downscaled450

reanalysis fields is well bellow that of the best performing downscaling model451

under cross validation, suggesting that uncertainty due to changing calibra-452

tion windows is greater than that from the selection of the particular predictor453

dataset.454

A CCA model fit to the reanalysis data also reduces biases in the free-455

running CCSM4 Last Millennium simulation. Downscaling CCSM4 outputs456

by simply projecting them onto the patterns estimated from CERA-20C cor-457

rects mean and variance biases in total domain-wide SWE relative to the raw458

simulation (Figure 9). Domain-wide SWE downscaled from CCSM4 exhibits459
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Fig. 8 Standardized SWE anomalies for the 1997 El Niño in (A) CERA-20C reanalysis,
(B) downscaled CERA-20C reanalysis using CCA with seven coupled patterns, and (C)
observations. (B) and (C) are both scaled by the observed SWE standard deviation to allow
comparison. Note the lower standardized anomalies in the downscaled reanalysis relative to
the observations, due to the residual variance unexplained by the leading patterns.

Fig. 9 Total Western US March SWE in teraliters (km3) from the CCSM4 Last Millennium
simulation (Landrum et al, 2013) with CCA downscaling (dark gray) and without (light
gray), compared to the 1982-2017 observed mean (dashed line). Unlike CERA-20C, CCSM4
is not constrained to be synchronous with observations and is instead assessed on a 50-year
distributional basis. The same model fit from Figure 7 is used here, with the CCSM4 data
simply projected onto the reanalysis PC space to enable downscaling. This approach was
less successful when applied to CESM-LME outputs (not shown), as its ∼2◦native resolution
was too coarse to meaningfully project onto the 1◦reanalysis patterns.

the same broad temporal correlations to simulated temperature and precipita-460

tion trends internal to the raw CCSM4 simulation, indicating that downscaling461

does not break the physical consistency of the water balance from the free-462

running simulation.463
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That simply projecting the CCSM4 data onto the CERA-20C patterns,464

without additional transformations, results in reasonable estimates at all is465

informative. For a statistical model fit on large-scale patterns from one sim-466

ulation to meaningfully generalize to those from a different simulation is not467

guaranteed. Indeed, this is not the case for the coarser 2◦CESM-LME simula-468

tion. Although the spatial patterns from CESM-LME are visually similar to469

those in Figure 2, they are too different at the grid cell level to be used directly470

for downscaling. This constraint holds regardless of whether the CESM-LME471

data are first resampled to the 1◦resolution of CERA-20C and CCSM4 or when472

CERA-20C is resampled to the lower CESM resolution. This indicates that the473

problem is not due grid-size per se, but rather the impact of the simulation’s474

native resolution on the underlying dynamics. That the downscaling model can475

generalize to both a distinct reanalysis dataset (20CRv3) and free-running cli-476

mate model (CCSM4) at the same native resolution as the CERA-20C data477

used to fit the model, but not to the coarser CESM data, suggests the model478

generalizes well only to simulations run with a similar native resolution to the479

training data.480

5 Discussion481

A small number of climate modes explain the majority of observed and sim-482

ulated interannual variance in snowpack across the western United States.483

Five to seven of these coupled modes are sufficient to downscale accurate484

high-resolution maps of regional snow water equivalent from coarse-resolution485

climate simulations. Even an extremely simple model with only one mode is486

able to reproduce the time evolution of the total volume of water stored in487

snow across the whole domain, although this is unlikely to be sufficient for488

full field spatiotemporal analyses. In spite of known biases in simulated SWE489

arising from issues of scale and process uncertainty, these findings suggest490

modern numerical simulations capture enough of the large scale atmosphere-491

ocean dynamics that drive interannual snowpack variability to be appropriate492

predictors for high resolution downscaling products.493

Given judicious choice of physically meaningful patterns as predictors and494

predictands, even a simple linear downscaling method yields skillful hindcasts495

of observed SWE variability. This approach relies on the ability of climate496

and weather models to accurately simulate large-scale atmosphere-ocean vari-497

ability. Rather than deriving complex transfer functions between a variety of498

local variables—a process that often breaks the physical consistency of cli-499

mate model outputs—this approach uses the internal physical consistency of500

those simulations to its advantage by finding a simple mapping between sim-501

ulated and observed patterns. Anchoring statistical downscaling methods in a502

mechanistic understanding of the climate system, instead of using downscaling503

as a replacement for that understanding, is of paramount importance to any504

downscaling project.505
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The leading two principal modes of variability highlighted in this study—a506

coherent domain-wide signal and a north/south dipole—have been identified507

previously in observational data of snow and several variables (Redmond and508

Koch, 1991; Cayan, 1996; McCabe and Dettinger, 2002; Jin et al, 2006; Mc-509

Cabe et al, 2013; Pederson et al, 2013; Malevich and Woodhouse, 2017). The510

first mode represents a domain-wide temperature anomaly associated with511

PNA-type atmospheric circulation. The second represents the influence of512

tropical Pacific SST variability (ENSO, PDO) deflecting storm tracks north or513

south and causing coincident temperature and precipitation anomalies in each514

region. This pair of influences is robust over time and appears in long-term515

tree-ring reconstructions from similar domains (Woodhouse, 2003; Pederson516

et al, 2011; Coulthard, 2015; Barandiaran et al, 2017).517

There is less certainty as to the drivers of the successive modes of vari-518

ability. Possible influences include cold vs. warm El Niño years, atmospheric519

rivers, temperature anomalies due to the Northern Annular Mode and North520

Atlantic Oscillation, or overlapping multidecadal modes of Pacific SST vari-521

ability (QDO, PDO, IPO) (Ghatak et al, 2010; Seager et al, 2010; Barrett et al,522

2015; Barandiaran et al, 2017; Goldenson et al, 2018). Complicating matters523

further is that the same large scale pattern can influence snowpack through524

multiple physical pathways and different teleconnections can act through the525

same pathway (Mote, 2003; Ge et al, 2009; Ghatak et al, 2010). For exam-526

ple, ENSO variability influences both temperature and precipitation, and by527

extension snow accumulation and ablation, simultaneously. Likewise, Pacific528

SST variability can influence storm tracks across multiple spatial and temporal529

scales.530

Ultimately, these large-scale patterns represent the outcome of nonlinear,531

interacting processes that may not necessarily be well represented by linear532

statistical methods like PCA and CCA. What may appear to be distinct cli-533

matic modes in a PCA may instead reflect the method’s linearity assumptions534

and orthogonality constraints. While these methods are nevertheless useful535

for downscaling because they isolate the parsimonious subspace of variability536

most influenced by these large-scale dynamics, interpretations of the individual537

modes must always be treated with caution. An alternative approach would be538

to use nonlinear feature extraction methods such as independent components539

analysis, self-organizing maps, or variational autoencoders to generate statis-540

tically independent patterns with increased interpretability and out-of-sample541

predictability (Reusch et al, 2005; Fassnacht and Derry, 2010; Henderson et al,542

2017; Baño-Medina et al, 2020; He and Eastman, 2020). However, the risk of543

overfitting nonlinear methods remains high given the short observational win-544

dow, and standard linear methods are already highly skillful.545

Regardless of whether this large-scale variability is captured by linear or546

nonlinear methods, a degree of unexplained local variability will remain. About547

20% of the local SWE variance observed at the grid cell level is left unexplained548

by the large-scale patterns. By definition, methods that use a restricted num-549

ber of patterns on the left hand side of the regression equation will explain only550

a subset of the observed variance. Ideally, a downscaled SWE product would551
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preserve this full range of variability and give some insight into the uncertainty552

in the downscaled estimates (Hewitt et al, 2018). An intuitive approach would553

be to add the residual variance back to each grid cell as uncorrelated white554

noise. However, we find here that the residual fraction is non-normal, spatially555

autocorrelated, and varies in magnitude across the study domain. While an556

analytical solution to the CCA noise fraction exists (Wilks, 2014), a more557

pragmatic approach may be to fit Gaussian process or copula models to the558

cross-validated errors directly. Regardless of the precise method, this residual559

internal variability should be modeled in order to yield downscaled data ap-560

propriate for localized climate-change impact assessments (Towler et al, 2017).561

To be truly useful to researchers, stakeholders, and policy makers in the562

western US, downscaled snowpack products should take advantage of the wide563

range of long-term paleoclimate simulations to generate long-term ensembles564

of high-resolution snowpack variability. Such products would provide a crucial565

baseline for assessing present and future climate changes. Downscaled SWE es-566

timates can also serve as spatially-explicit priors for data-assimilation (Huang567

et al, 2017b; Devers et al, 2019; Fiddes et al, 2019; Girotto et al, 2020), com-568

bining high-resolution snowpack fields with snow-sensitive tree-ring proxies569

(Coulthard et al, 2021) to generate integrated paleoclimate reconstructions570

(Hakim et al, 2016). We applied our reanalysis-based downscaling approach to571

a free-running CCSM4 simulation to test the generality of the leading SWE572

patterns, suggesting that pattern-based downscaling of long-term paleoclimate573

simulations is indeed possible. Operational downscaling for long-term climate-574

change impact assessments will require further steps to ensure the robustness575

of the coupled patterns, such as Common EOF analysis on combined reanaly-576

sis and GCM fields (Benestad, 2001) and perfect model experiments (Maraun577

and Widmann, 2018) to determine whether a long-term climate change sig-578

nal can be captured by changes in the relative expression of existing spatial579

patterns. Nevertheless, our results indicate that leading modes of snowpack580

variability have been sufficiently stable for at least the past few centuries,581

and that pattern-based downscaling provides clear added value for assessing582

changing snowpack over the long-term.583
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