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Abstract

Archaeological settlement patterns are the physical remains of complex webs of
human decision-making and social interaction. Entropy-maximizing spatial in-
teraction models are a means of building parsimonious models that average over
much of this small-scale complexity, while maintaining key large-scale structural
features. Dynamic social interaction models extend this approach by allowing
archaeologists to explore the co-evolution of human settlement systems and the
networks of interaction that drive them. Yet, such models are often imprecise,
relying on generalized notions of settlement “influence” and “attractiveness”
rather than concrete material flows of goods and people. Here, I present a dis-
aggregated spatial interaction model that explicitly resolves trade and migration
flows and their combined influence on settlement growth and decline. I explore
how the balance of costs and benefits of each type of interaction influence long-
term settlement patterns. I find trade flows are the strongest determinant of
equilibrium settlement structure, and that migration flows play a more transient
role in balancing site hierarchies. This model illustrates how the broad toolkit
for spatial interaction modeling developed in geography and economics can in-
crease the precision of quantitative theory building in archaeology, and provides
a roadmap for connecting mechanistic models to the empirical archaeological
record.

1 Introduction

Regional archaeological settlement patterns arise from the interactions of many
individual agents, each making decisions with imperfect and incomplete in-
formation about the costs and benefits of social interaction. Yet, in spite of
this complexity at the individual scale, empirical regularities emerge at larger
scales. So-called “entropy-maximizing” spatial interaction models capitalize on
this change-of-scale property. Entropy maximization is a means of estimating
the large-scale properties of a system by making the fewest possible assumptions
about micro-scale dynamics (Pressé et al. 2013; Thurner et al. 2017). Entropy
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here is a measure of micro-scale uncertainty, and maximizing it reveals the most
probable macro-scale system configuration. An entropy-maximizing spatial in-
teraction model estimates the large-scale flows of a constrained quantity, such as
goods and people, between discrete spatial zones as a function of their distance
and their mutual “attractiveness” (Wilson 1971). It works by systematizing the
basic costs and benefits used in decision-making and scaling them up ensur-
ing that simple self-consistency constraints (such as total inflows equals total
outflows) are met.

Archaeologists have embraced this modeling paradigm to infer past human
behaviors from the pattern of settlements visible on the landscape. Archaeolo-
gists have successfully used these models to assess the sensitivity of estimated
settlement structures to uncertainty in the archaeological record (Bevan and
Wilson 2013; Paliou and Bevan 2016), model the evolution of site hierarchies
absent top-down forces (Altaweel 2015), explore the role of historical contin-
gency in the development of major settlements (Evans and Rivers 2017), and
determine key factors in the formation known urban networks in varying loca-
tions and time periods (Davies et al. 2014; Altaweel et al. 2015; Palmisano and
Altaweel 2015; Filet 2017).

In isolation, an entropy-maximizing interaction model is essentially a statis-
tical tool, estimating the most likely configuration of flows between settlements
given the relevant constraints. Dynamic spatial interaction models, on the other
hand, combine these flow estimates with one or more mechanistic models to de-
scribe how the flows wax and wane over time (Harris and Wilson 1978). In
such cases, the spatial interaction model captures the “fast” dynamics – the
balance of flows between locations as a function of their relative size or im-
portance – and the mechanistic model captures the “slow” dynamics governing
how the locations grow or decline because of their access to those flows. As im-
plemented in archaeology, the slow dynamics are typically equilibrium-seeking
and settlements evolve only to balance inflows and outflows. As a result, many
archaeological applications of these models use them as heuristic tools for find-
ing equilibrium settlement distributions rather than as dynamical models that
explicitly resolve the time evolution of settlement systems (Bevan and Wilson
2013).

Powerful alternatives to the equilibrium-seeking slow dynamic in archaeo-
logical spatial interaction models are Lotka-Volterra consumer resource equa-
tions. Lotka-Volterra equations are used in ecology to model energy flows in
a food web. More generally, these models can represent energy flows in any
social-ecological system, such as an agricultural settlement consuming resources
from its hinterland (Anderies and Hegmon 2011; Qubbaj et al. 2014). Spa-
tial interaction models are particularly useful for incorporating spatial richness
into Lotka-Volterra models, which would otherwise resolve space only implicitly
(Wilson 2006). Models that use entropy maximization to estimate the “fast”
flow dynamics and consumer-resource equations to represent the “slow” settle-
ment dynamics are known as Boltzmann-Lotka-Volterra models (Wilson 2008).
These systems of equations are able to capture the dynamic feedbacks between
settlements and the networks connecting them.
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In order to keep them flexible, archaeological spatial interaction models are
typically abstract and highly aggregated. The flows are assumed to be some
aggregate of trade and migration reflecting the “influence” of each site on an-
other, and the settlement state variable that evolves in time is some generalized
notion of “attractiveness.” While these generalizations are useful for empirical
work, they elide much of the processual granularity that makes these models
such a useful tool for quantitative theory building. Metabolic costs, such as the
energy expended producing and transporting food over space where transporta-
tion infrastructure is sparse, provide constraints on energy flows in exchange
systems (Drennan 1984; Verhagen et al. 2019). In any particular case, the
balance between these costs and the metabolic benefits of social interaction in-
fluences whether resources are moved in bulk to populations in a settlement or
whether those populations move themselves to the available resources. In order
to determine how the balance of these flows influence long-run settlement pat-
terns it is thus necessary to replace the generalized notion of flows of “influence”
with more direct estimates of trade and migration flows and a more concrete
mechanistic model for how these flows influence settlement dynamics.

Here, I present a dynamic spatial interaction model that explicitly tracks
the flows of trade and migration within a settlement system. I use a variant
of the Lotka-Volterra equations known as a “competition for resources” model,
in which a population of urban settlements competes for access to food from
multiple agricultural resource patches. The populations of these settlements
grow and decline according to the flow of resources into the settlements and
the flow of migrants between them. Using a disaggregated, two-part spatial
interaction model, I model the flows of food to people (“trade”) and the flows
of people to food (“migration”) separately and explore how varying the relative
costs of each type of movement influences the resulting population distribu-
tion at equilibrium. I show that the constraint on moving food to people is
the primary determinant of long-run settlement patterns, shaping the extrac-
tive reach of settlements and their ultimate carrying capacity. Migration costs
play a secondary role enhancing or diminishing existing settlement hierarchies
depending on the specific migrant objectives. These findings contribute to the
ongoing development of quantitative theory of spatial interaction in premodern
societies, but also provide important caveats for interpreting statistical analyses
of archaeological networks.

2 Methods

2.1 Population Growth and Decay: The “Slow” Dynamics

I explore a simple model of agricultural settlements in a patchy environment.
The basic unit is a settlement, representing any urban or semi-urban population
in an agricultural society consuming food from resource patches to support a
population of non-farmers. The dynamics of food production are left external to
the model, and it is assumed that a fixed volume of food resources are produced
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each year. The core dynamic of the urban population is represented as

Ṅ = rN, (1)

where Ṅ is the time rate of change of population N and r is the realized
growth rate. The realized growth rate depends on the resource consumption of
N as

r =

{
ε (X −N) if ε (X −N) < rmax

rmax otherwise,
(2)

where X is the amount of available resources, ε is a parameter that controls the
rate at which the resource surplus increases or decreases the population, and
rmax is the maximum growth rate. This equation states that the population
grows or shrinks in proportion to its consumption of resources, but it cannot
grow faster than a biological maximum rate. For simplicity, assume that X is
scaled to units of N so that one unit of resource is sufficient to maintain one
unit of population. The resulting process is a hybrid of exponential and logistic
growth, with the population growing quickly when consumption is far above
population and more gradually when consumption is close to the current needs
of the population (i.e. “carrying capacity”) (Figure 1).

Rather than a single settlement-resource system, the model represents a
network of hundreds of interacting settlements and resource patches (Figure 2).
The landscape is discretized into hexagonal resource patches with radius 5km,
over which settlements are uniformly distributed. Settlements compete with one
another for the fixed resources produced in each patch each time step, a dynamic
analogous to the “competition for resources” model common in ecology. Not
only do settlements interact indirectly with one another by harvesting the same
patch, but they interact directly by exchanging population through migration.
Each model year, a fixed proportion of a settlement’s population leaves each
city. These migrants select their destination based on the size and distance of
potential migration destinations (including their origin location) and the relative
per capita resource extraction rate of each settlement.

The simple mathematical model presented above can thus be extended into a
social-ecological network of multiple interconnected consumer-resource systems.
First, disaggregate X and N into Xi and Nj , representing the resources at
location i and the population at location j. Then, introduce two flow matrices
T and M that represent trade and migration flows, respectively, such that the
volume of resources produced in patch Xi that are consumed by the population
in settlement Nj is Tij , and the number of migrants moving from settlement Ni
to Nj is Mij . For simplicity, the harvest of resources from patches is referred to
as “trade”, although it generally reflects any movement of food from one location
to a population center in another, including non-market forms of exchange such
as sharing, exchange, or tribute. Assuming a per capita out migration rate of
of ν, the expanded version of Eq. 1 and 2 is thus:
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Figure 1: Simulations from the growth model, compared to exponential and
logistic growth for two levels of resource surplus X over the same time span.
X acts as a carrying capacity. When X is low, the potential for growth is low
and the population approaches carrying capacity gradually similar to logistic
growth. When X is far above N the population exponentially, with growth
rates only declining shortly before carrying capacity is reached.
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Figure 2: Spatial domain for the simulation experiments. The resource patches
are 300 evenly-sized hexagons with radius 5km arranged in a continuous tiling
with a total size of approximately 19,500 km2. Settlements are arranged in
a triangular lattice located at the centroids of each hexagonal patch, and are
connected by a system of physical paths joining each settlement to its six nearest
neighbors.

Ṅj = rNj − νNj +
∑
i

Mij , (3)

r =

{
ε (
∑
i Tij −Nj) if ε (

∑
i Tij −Nj) < rmax

rmax otherwise.
(4)

Together, these equations state that the population of each settlement grows
according to the total inflow of resources from every patch and the total inflow of
migrants from every settlement. Because all settlements compete for resources
from every patch and compete with each other for migrants, the growth of one
settlement depends in part on that of all other settlements. Next, I show how
the resource and migrant flows represented in T and M themselves emerge from
these population dynamics.

2.2 Trade, Migration, and Spatial Interaction: The “Fast”
Dynamics

The model tracks two kinds of spatial flow using separate spatial interaction
models: movement of resources from patches into settlements and movement of
people between settlements. Both cases use similar “production-constrained”
spatial interaction models. The general approach, first used in archaeology by
Rihll and Wilson (1991), takes a fixed volume of flow “produced” at each lo-
cation and allocates it among all potential destinations in proportion to the
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relative costs and benefits of interacting with each. Benefits are assessed as a
power function of one or more settlement-level variables (such as size) that at-
tract flows, and costs are assessed as a negative exponential function of distance
(Figure 3). Two parameters, α and β, control the strength of these influences.
When α > 1 the benefits of interaction exhibit increasing returns to scale. β is
in units of distance, and can be interpreted as the distance at which the strength
of interaction decays to about two-thirds of its original value.

The spatial interaction model for trade is a simple “gravity” model, in which
settlement population N is the only variable determining a settlement’s attrac-
tiveness. Thus the flow of resources from patch i to settlement j, is

Tij = Xi

Nα1
j exp (−cij/β1)∑

kN
α1

k exp (−cik/β1)
, (5)

where Xi is the amount of resources produced in the patch – the “production”
term that is “constrained” in the model – and cij is the cost of moving from i to
j (distance in kilometers). The terms in the fraction simply assess the relative
costs and benefits, with the numerator representing the utility of moving food
to settlement i and the denominator the sum of the utilities for all potential
destination locations, together ensuring that the total outflows equal the total
resources in Xi. Because of this balancing factor, all trade flows among set-
tlements can be computed simultaneously and there is no need to evaluate the
flows to each settlement sequentially. A settlement has no special access to its
local resource patch, save only for its proximity relative to other settlements
(cij = 0 if i = j).

The migration flows depend in part on the trade flows, and are modeled in
a similar fashion. The number of migrants moving from settlement i to j is

Mij = νNi
Nα1
j Wα2

j exp (−cij/β2)∑
kN

α1

k Wα2

k exp (−cik/β2)
, (6)

where νNi is the number of migrants originating in i and Wj =
∑
i Tij/Nj is

the per capita welfare of j, defined as the ratio of trade inflows to population.
As with trade, all migrant flows occur simultaneously in a time step due to the
production constraint term, and after all trade flows are computed. Unlike in
the trade equation (5), the attractiveness of a given settlement as a migration
destination depends on both its population size and its welfare. Migrants will
thus seek out destinations with lots of well-fed people, and the relative values
of α1 and α2 determine the relative importance of each factor.

In summary, the flow of resources from each resource patch to each settle-
ment is first determined by Equation 5, which depends on the underlying dis-
tribution of resources and settlement populations. Then, the flow of migrants
between settlements is determined by Equation 6, based on the settlement pop-
ulations and the flow of resources. Finally, the populations of the settlements
grow both by consuming trade resources and by accepting new migrants ac-
cording to Equation 3, and this new population distribution will feed back to
influence future trade and migrant flows. The entire system is a complicated
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Figure 3: Functional forms for the spatial interaction models. A) Settlement-
level variables influence the attractiveness of each settlement via a power func-
tion, with the parameter α governing the importance of that variable. B) The
costs of moving over space take the form of a negative exponential function,
with the parameter β determining the steepness of the falloff of interaction with
distance (higher values of β allow interaction to occur at farther distances).
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web of nonlinear interaction, as the growth and decline of settlements can poten-
tially depend on all other settlements. The complexity of this system increases
geometrically as the number of settlements increases, precluding exact analytic
solutions. We must instead leverage numerical simulations to capture these
complex spatial interactions.

3 Analysis

The disaggregated spatial interaction model was run from uniform initial con-
ditions, with X = 200 and N = 25, for 2000 years or until the system reached
an equilibrium. This analysis focuses on the behavior of system under different
combinations of the parameters that control the costs and benefits of interac-
tion α1, α2, β1, β2. The parameter α1 determines how the population size of a
settlement influences its attractiveness as a target for trade and migration, and
α2 determines how this attractiveness depends on per capita welfare. β1 and
β2 both correspond to units of distance (here kilometers) and determine the
impact of distance on the intensity of flows, with the former representing the
ease of moving resources to population centers and the latter the ease of moving
people among population centers. Settlement patterns under different param-
eterizations were assessed via graphical comparison and statistical analysis of
aggregate quantities including the total population, count of settlements, and
an index of population dispersion and concentration. The following analysis fo-
cuses on the area of the parameter space where α1,2 ≥ 1 and β1 ≤ β2, reflecting
assumptions that there are positive returns to scale in attractiveness and that
moving people over the landscape is easier than moving bulk food supplies.

Table 1: Parameters, their default values, and ranges explored.

Parameter Value Interpretation
ε 0.0001 Consumption adjustment rate
rmax 0.02 Maximum growth rate
ν 0.05 Migration rate
α1 [1.0, 1.05, 1.1, 1.15] Returns to population size
α2 [0, 1.0, 1.05, 1.1, 1.15] Returns to per capita welfare
β1 [5, 10, 15, 20] Ease of moving food to people
β2 [5, 10, 15, 20] Ease of moving people to food

3.1 The Movement of Food to People Defines Settlement
Territory Size, Migration Costs Mediate the Distribu-
tion of Population

How does the cost of moving food and people over distance, as encoded in the
β parameters, influence settlement patterns at equilibrium? The β parameters
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Figure 4: The role of the ease of movement for trade in settlement size and
spacing. A) Equilibrium settlement patterns and populations for different levels
of β1, with β2 = 20, α1 = 1.15, α2 = 0. The β parameters are scaled to distance
units (here kilometers). B) Same as A, but for each patch an edge is drawn
connecting it to the settlement to which the majority of its resources flow.
Trade flow is measured in units of food to support 1 person per year.

are the primary way space is introduced into the model. By design, the costs of
moving food and other resources from resource patches to settlements will be
different from the costs of moving people between settlements. The balance of
these cost factors can introduce complexity into the spatial patterns that result
from these interactions.

For cases where migration is based only on population size, not welfare (α1 =
1.15, α2 = 0), increasing β1 to allow food to be moved longer distances to reach
settlements decreases the number of inhabited settlements and increases their
size at equilibrium (Figure 4a). As the number of settlements at equilibrium
decreases, these major settlements also move closer to the center of the domain,
corresponding to the locations with the maximum access to resources given
the travel costs. This competition for resource access can be visualized by
connecting each resource patch to the settlement to which the majority of its
resources travel (Figure 4b).

If the costs of moving resources to settlements, as encoded in β1, strongly
determine the size and spacing of major settlements, what role to the migration
costs embedded in β2 play? Holding β1 constant at a low value (5km) and
varying β2 allows migrants to move further across the landscape than food
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Figure 5: Settlement population (A) and trade flows (B) at equilibrium for
different levels of β2, the ease of movement for migration, with β1 = 5, α1 =
1.15, α2 = 0.

resources. The result is a pattern of concentric rings at low values of β2 (Figure
5a). When it is difficult to move food over space, migration acts in lieu of food
transport by increasing the size of the terminal centers (allowing population to
move to populated zones), but this effect and the resulting size of the population
is not nearly as strong as that induced by varying β1.

A settlement’s ability to gain an initial surplus because of its position is key
to its long-term survival. The absolute productivity of the land is less important
than access to resources systems without significant competition from other
settlements. Changing β1 to facilitate easier resource transport acts to increase
the competition between settlements for productive land, making it easier for
larger, more distant settlements to out-compete smaller nearby settlements for
access to a given resource system. Although the model does not explicitly
account for edge effects at the boundary of the spatial domain, in practice the
distance scale of spatial interaction encoded in the β parameters is much less
than the scale of the spatial domain as a whole. That said, the shape of the
spatial domain does influence the dynamics, as it should in the real world. The
initial benefits to a site because of its position in the spatial domain related to
other patches leads to increased population growth, which feeds back to allow
the settlement to compete for resources and population from sources further
afield.
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3.2 Population-based Migration Increases Settlement Hi-
erarchy; Welfare-based Migration Reduces It

The parameters α1 and α2 control the relevance of site population and per
capita welfare in attracting flows of food and migrants. Introducing superlinear
scaling parameters to the population size and welfare by increasing α1 and α2

doesn’t change the basic interaction between the β parameters, but does impact
the size hierarchy. Alternately setting α2 = 0 or α2 ≥ 1 allows the model to
represent scenarios in which only population size determines the attractiveness
of a settlement to migrants, or situations in which the balance of population
and per capita welfare influence migrant decision-making.

In the first scenario with only population-based migration, there are non-
linear interactions between the migrant attractiveness and ease of movement
parameters (Figure 6). Generally, increasing α1 increases the concentration of
populations in fewer centers. As before, the settlements near the edge grow
fastest because there is less competition for access to resources. There is a
break in this pattern at β2 ≥ 15 and α1 = 1, where the center becomes filled
with multiple settlements of similar size in a hexagon pattern. The number
of settlements in this central zone increases with increasing migration. These
settlements only extract food from their local resource patch. This core settle-
ment zone is a result of the size and shape of the spatial domain, as at long
distance interaction the size and shape of the domain more strongly constrains
the possible configurations. These inner zones are only present when β1 is low
or when α1 = 1, as this zone represents situations where no settlement can get
an initial advantage from its location or increasing returns to scale and growth
ceases. Settlements at the edge get initial advantages because they have fewer
nearby cities competing with them for resources. At low β2, this dynamic mat-
ters little, but at high β2 it sets off a feedback loop as population migrates to
the sites with initial advantages. This central zone disappears if β1 or α1 is
increased, allowing for some sites to gain initial advantages that feed forward
in time. In these cases, β2 no longer changes the broad settlement pattern but
rather serves to concentrate more people in fewer, closer core settlements.

Allowing α2 ≥ 1, so that people avoid settlements with low welfare, consid-
erably increases the complexity of the system when trade costs are high (Figure
7). If migrants are attracted to zones with high per capita welfare, migration
acts to smooth over variations in settlement size due to differential access to
resources. The uniform central zone of low population centers discussed earlier
arises at even shorter distance migration. This reflects situations where move-
ment is generally easy, but there are few advantages to living in more populated
sites so migration acts as a counterbalance to the competition for resources.

4 Discussion

This study sought to explore the relative influence of the costs of transporting
food into settlements and the those for moving migrants between them. Anal-
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Figure 6: Interaction between the ease of movement for migrants (β2, columns)
and the returns to attractiveness for population size (α1, rows), when the mov-
ing food to settlements is difficult and migrants make decisions based only on
settlement population size (β1 = 5 and α2 = 0). The β parameters are scaled
to distance units for interpretability, and the α parameters are dimensionless.
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Figure 7: Interaction between the ease of movement for migrants (β2, columns)
and the returns to attractiveness for per capita welfare (α2, rows), when the
moving food to settlements is difficult and migrants make decisions based on
both settlement population size and per capita welfare (β1 = 5 and α1 = 1.15).
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ysis of a disaggregated spatial interaction model revealed that trade costs were
ultimately more important than migration costs for shaping overall settlement
patterns. These results highlight that the precise nature of spatial interaction
in a settlement system has important consequences for understanding the de-
velopment and maintenance of stable settlement patterns in the archaeological
record.

The costs of moving resources from resource patches to settlements deter-
mine the territorial reach of resource extraction, which is the primary deter-
minant of equilibrium site size and spatial configuration. Even small initial
differences in the number of people the local resource patches can support can
increase consumption enough to set off a positive feedback between settlement
population and resource extraction. The importance of trade flows here is con-
sistent with related modeling efforts that highlight the role of trade networks in
extending local carrying capacity in simple consumer resource networks (Qubbaj
et al. 2014; Dolfing et al. 2019).

This dynamic has empirical support. The pattern of 5km settlement-patch
modules self-organizing into nucleated settlements harvesting from larger 15-
20km “compound catchments” with larger settlements thus spaced 30-40km
on the landscape has been documented in Bronze Age northern Mesopotamia
and Hungary (Wilkinson 1994; Duffy 2011). These “compound catchments”
need not themselves be hexagonal. When migration costs are low relative to
resource transport, the model predicts fan-shaped compound catchments aris-
ing not from centralization around the target settlement but competition with
other neighboring settlements, a situation visible in the settlement patterns of
central Mexico (Hirth 1978). In general, it appears that the configuration of re-
source flows into settlements directly influences the emergent spatial and social
structure (Crabtree et al. 2017).

The spatial scale of settlement structure in these examples implies the flow
of overland food transport attenuates at around 20km, reflecting a value of β1
value of 4-5km. This value is supported by analysis of settlement structures
across a broad swath of northern Mesopotamia (Menze and Ur 2012). Of course
this value will vary for different modes of travel, but it provides an appropriate
baseline for exploring settlement patterns in other small-scale societies lacking
specialized transport technology. An increase in inter-site spacing or the growth
of sites in once marginal zones suggests innovations in moving food resources
over space, such as the shift from “hubs” and “endogenous upstarts” to “ex-
ogenous upstarts” in the settlement history of Mesopotamia with the advent
of extensive sheep and goat pastoralism and long-distance trade (Lawrence and
Wilkinson 2015; Lawrence et al. 2016).

Migration has a more subtle influence than trade in the model, acting to
redistribute population among settlements with less impact on aggregate set-
tlement structure. Migration is most important when food transport costs are
particularly high and the territorial reach of small settlements is low. When
migrants choose where to travel based on population size alone, the resulting
dynamic is one of nucleation and stratification. This phenomenon is ubiquitous
in the archaeological record, from the coalescence of Hohokam communities in
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the US Southwest (Hill et al. 2004), to Jomon-era Japan (Crema 2013), and the
synoikism of classical Greek poleis (Mackil 2004). Several factors can lead to
apparent aggregation and the formation of settlement hierarchy in the archaeo-
logical record (Duffy 2011), but many are special cases of this population-based
dynamic. External threats of warfare or benefits from socio-economic activity
may all encourage people to live together, for example, but from an individual’s
perspective the choice of destination is still made based on population size.

The ubiquity of nucleation in the archaeological record suggests that the
second determinant of migration in the model, per capita food supply, is less
relevant to migrant decision-making than absolute population. Aggregation in
the southern US Southwest is associated with net population decline, for exam-
ple, as migrants from the north stressed local productive capacity and reduced
local welfare (Hill et al. 2004). Perhaps long-term cycles of dispersion and aggre-
gation, as evidenced in the US Southwest and Jomon-era Japan (Crema 2013),
reflects shifts in the relative importance of absolute population and food supply
to population flows.

An important point that emerges from the archaeological record is the im-
portance of external environmental factors. Settlement aggregation in both the
US Southwest and Mesopotamia often occurred in areas with high irrigation
potential, or with easy topographic access to other settlements (Hill et al. 2004;
Lawrence et al. 2016). Although the model is capable of capturing these influ-
ences, this study simulated a regular lattice of settlements overlaying a uniform
environment in order to isolate the effects of the spatial interaction on the sys-
tem’s behavior. But the resulting dynamics are nonlinear, which means that
the initial and boundary conditions of the settlement system will constrain its
ultimate trajectory. In any given real-world setting, the initial distribution of
sites, not to mention the spatial configuration of productive land and physical
impediments to travel, will influence the resulting settlement patterns. Future
explorations of this model should measure the effect of such environmental vari-
ability. In particular, this disaggregated modeling framework can help isolate
quantitative classes of variability that lead to qualitatively different settlement
patterns, such as degrees of spatial or temporal auto-correlation.

Future work should also draw on the extensive toolkit developed in geogra-
phy and economics for dynamic spatial interaction modeling. Potential method-
ological innovations include various ways of further disaggregating the “fast”
flow dynamics or of incorporating more complex or context-specific models into
the “slow” settlement dynamics (Fry and Wilson 2012). For example, how do
the costs of transporting resources to settlements interact when the resources in-
clude not just food, but other raw materials for energy or craft production that
may contribute to a settlement’s carrying capacity or attractiveness? Similarly,
the migration flows could be disaggregated to explore the interactions between
those of different age, ethnic, or social classes (Altaweel 2015).

Given more precise models of the spatial flows, the dynamics of settlement
growth and decline can also be elaborated. In the present version of the model,
the production of food and the production of migrants at each settlement is as-
sumed to be constant or a fixed proportion of population size, respectively. One
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might instead model the dynamics of the food producers directly, incorporating
feedbacks between producer and consumer populations (Turchin 2003), or allow
migration rates to vary based on population size (Curiel et al. 2018) or differ-
ences in the levels of per capita food consumption (Anderies and Hegmon 2011).
Even if these elaborations do little to alter settlement patterns at equilibrium,
they will introduce important new behaviors as theses systems approach that
equilibrium – the “transient” dynamics – that in concert with variable initial
and boundary conditions will be critical for reproducing the complexity visible
in the archaeological record.

And it is precisely here, at the interface of archaeological theory and data,
where spatial interaction models may contribute most. These models support
both dynamical and statistical implementation; the same model can be used as
a tool for developing theory from one domain and interpreting data in another.
Numerical simulation with these models can help explore the empirical archae-
ological record, and act as a test bed for the development of new statistical
methods. For example, a statistical spatial interaction model estimates only
one β value, the coefficient of distance in a log-linear regression. How should
one interpret this regression coefficient when it is likely that the pattern at
hand arose from the interaction of multiple spatial processes? Disaggregated,
dynamic spatial interaction models allow researchers to flexibly explore differ-
ent dynamical processes interacting to form the stable patterns recorded in the
field.

This research highlights dynamics of networks, not dynamics on networks.
The approach implicit in many conceptual and mathematical models of net-
works, and archaeological networks in particular, treats them as static (if non-
trivial) structures on which some dynamic of interest plays out. These structures
only change in time to the extent that the researcher intervenes by adding or
removing nodes and edges manually. This view is understandable given the
fragmentary and time-averaged nature of the archaeological record. Instead,
the approach used here treats social networks as dynamical systems with con-
tinuous flows of matter, information, and energy in constant interaction with
their ecological and social environments (Brughmans and Poblome 2016; Crab-
tree 2015). Improved representations of social and biophysical dynamics will
not only enhance understanding of the empirical settlement patterning in the
archaeological record, but will also facilitate future cross-cultural and inter-
regional comparisons by providing a shared set of questions and methodological
tools for answering them.

Settlement patterns are some of the most basic components of the archae-
ological record, yet only in recent decades have archaeologists developed the
computational expertise and theoretical tools needed to reconstruct the social
fabrics binding those settlements together. But the utility of such datasets for
addressing questions of societal relevance remains limited. Archaeological settle-
ment pattern data are rarely comprehensible to the researchers, policy advisers,
and stakeholders in the developing world most likely to gain meaningful insight
from the information they contain. The solution to this problem lies in the
fuller integration of theory and data from the broader social sciences. Spatial
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interaction models can act as a bridge in this respect, allowing archaeologists
to leverage decades of accumulated research into the role of space and distance
on the societies of the present and the past.
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