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Chapter 7
The Dynamics of Risk Perception 
in a Mediterranean Agroecosystem

Nicolas Gauthier

7.1  Introduction

The distinctive climate and ecology of the Mediterranean basin afforded both chal-
lenges and opportunities to the earliest farming communities. Water was the pri-
mary limiting resource for these traditional agroecosystems. Agricultural droughts 
where growing season precipitation is low enough to cause crop failures are a con-
stant threat. Precipitation is highly variable in space and time, and droughts are 
difficult to predict with certainty. How were Neolithic farmers able to adapt to and 
even thrive in such an uncertain environment?

Over the past 10,000 years, small-scale subsistence farmers have relied on a suite 
of strategies to maintain stable food supplies given uncertain rainfall. These strate-
gies include practices like crop diversification, storage, mobility, and exchange 
(Halstead & O’Shea, 1989). Crop diversification in particular is an excellent exam-
ple of a widespread and effective risk management strategy that is well suited to 
Mediterranean agroecosystems. In the Mediterranean basin, land-use strategies 
involving a diversified portfolio of wheat and barley have been employed by the 
earliest sedentary farmers and continue to be used to this day (Gould, 1963; Araus 
et al., 1999; Abbo et al., 2010; Weiss & Zohary, 2011; Marston, 2011). Relying on 
a mix of food types with different climatic tolerances is an efficient way to maintain 
a robust food supply (Helmers et al., 2001; Anderies, 2006). Wheat is high yielding 
but drought-sensitive, while barley is lower yielding but drought-tolerant. Planting 
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a mix of high-yield, high-risk and low-yield, low-risk crops, either in the same plot 
or in a combination of plots is an effective means of diversifying the annual supply 
of staple food crops (Paut et al., 2019). By dynamically adjusting the ratio of wheat 
to barley in their fields, farmers can adapt to a variety of local climate conditions 
with different drought risks.

Risk-management strategies like crop diversification require farmers to make 
specific resource allocation decisions in response to specific environmental risks. As 
such, they are sensitive to variability in both the spatiotemporal patterns of risk and 
the ability of individual decision makers to perceive and act on those patterns. Here, 
I focus on two main questions:

 1. How likely were droughts to occur each year in the eastern Mediterranean region, 
and how did these risks change over the Holocene?

 2. How would Neolithic farmers have perceived these changing risks, and what 
were the consequences for Neolithic farmers’ collective ability to manage them?

To address these questions, I first use results from a long-term paleoclimate sim-
ulation to estimate the changing risk of agricultural droughts in the eastern 
Mediterranean over a 4000-year period in the early to middle Holocene. Then, I use 
a simulated population of “belief-based” Bayesian agents to explore how well indi-
vidual farmers would have been able to perceive these long-term changes in drought 
risks given their finite life experiences and limited capacity to process information. 
This computational approach allows for a more nuanced understanding of the vul-
nerability of risk-management strategies to unpredictable climatic variability. The R 
code to fully  reproduce this analysis is available for reuse and modification at 
https://doi.org/10.5281/zenodo.4927097.

7.2  Decision-Making in a Game Against Nature

The basic decision-making problem facing a farmer seeking to diversify their crops 
can be thought of as a “game against nature” (Milnor, 1952; Gould, 1963; Agrawal 
& Heady, 1968; Cassidy et al., 1971; Luce & Raiffa, 1989). In the context of deci-
sion theory, the “game” is the farmer’s decision of which crops to plant and in what 
proportions, given uncertainty in the weather (or the “state of nature”) in a given 
year. Assume that farmers are working with a simplified representation of reality 
and intuitively solve an easier problem when faced with a complex real-world situ-
ation (Simon, 1990). That is, rather than a continuum of possible states of nature, 
farmers only care about two categories – years when it is too dry to plant wheat and 
years when it is not.
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7.2.1  The Payoff Matrix

This simplified decision problem can take the form of a payoff matrix in which the 
rows represent the moves of the farmer (wheat or barley) and the columns are the 
moves of nature (dry or normal, Table 7.1). The matrix is populated with realistic 
estimates of crop yields derived from isotopic analyses of grain residues at Neolithic 
sites (Araus et al., 1999). However, the absolute yields are less important for the 
decision-making problem than the relative sums of each row and column. Given this 
payoff matrix, what strategies might a farmer use to “win” this game and maximize 
their yields?

There are several decision criteria a farmer might use in this situation (Milnor, 
1952; Agrawal & Heady, 1968). A risk-neutral farmer seeks only to maximize yields 
in a normal year by planting wheat and hoping for the best, as wheat is the highest 
yielding crop overall. But, this strategy risks starvation in drought years.

Instead, it is often rational to assume “nature’s” moves are decided by a sentient 
being bent on one’s ruin and to play strategically as if the worst-case scenario will 
occur (Gould, 1963; Beckenkamp, 2008). In the particular form of the wheat-barley 
game presented in Table 7.1, a risk-sensitive farmer would assume that droughts are 
inevitable and plant barley to guarantee a minimum acceptable harvest even in the 
worst-case scenario. This cautious strategy is beneficial in situations of complete 
uncertainty, but farmers miss out on the high yields they would have received from 
planting wheat if a drought ultimately does not occur.

7.2.2  Subjective Expected Yields

Playing this “game” over many years allows farmers to learn how probable each 
state of nature is to occur and to adjust their choices accordingly. This strategy is 
known as playing a game of “fictitious play” against nature. If the empirical fre-
quency distribution of wet and dry years is known, the farmer can multiply the crop 
yields in Table 7.1 by the probability of each state of nature occurring and plant the 
crop with the highest expected yield (Upton, 1987). If the probability of a dry year 
is denoted θ, then the expected barley yield is θ × 0.93 + (1 − θ) × 1.18 and the 
expected wheat yield is θ × 0 + (1 − θ) × 1.60. Barley is favored if θ is low and 

Table 7.1 Estimates of yield volume (t/ha) for prehistoric wheat and barley varieties derived from 
(Araus et  al., 1999). The absolute values here are less important for decision-making than the 
relative values across each row and column

Dry year Normal year

Barley yield 0.93 1.18
Wheat yield 0 1.60
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droughts are more likely, wheat is favored if θ high, and the value of θ at which 
expected barley and wheat yields are the same is known as the “point of indiffer-
ence” (Fig. 7.1). If a farmer is unsure whether θ is above or below the point of indif-
ference, they can plant a mix of crops that maximizes expected yields given their 
uncertainty in θ (Luce & Raiffa, 1989). Thus, the exact risk of a drought occurring 
in any given year and farmers’ perceptions of that risk both have major implications 
for the decision-making process.

7.3  Early to Mid-Holocene Drought Risks

In order to estimate drought risks in the past, present-day weather observations 
alone are insufficient. Precipitation varies not only from year to year, but also on 
centennial to millennial-scale time scales that are unresolved in the contemporary 
observational record. Climate dynamics are non-linear, non-stationary, and non- 
ergodic, which means sudden, unpredictable variability is the norm rather than the 
exception.

Estimates of past climate variability derived from paleoclimate simulations pro-
vide a richer representation of not only the first-order statistics of the climate system 
(e.g. the mean and variance of precipitation) but also the higher order patterns such 
as the serial persistence of wet and dry years. These estimates present a more real-
istic picture of the inherent year-to-year uncertainty in the climate system and a 
more realistic challenge to simple risk-managing strategies that assume climatic 
risks are fixed.
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Fig. 7.1 Expected wheat and barley yields under increasing drought risk. The point of indiffer-
ence is highlighted, at which point planting either wheat or barley results in the same expected yield
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7.3.1  Paleoclimate Simulation

Estimates of changing Holocene precipitation variability were derived from the 
TraCE-21k paleoclimate simulation (He, 2011). TraCE-21k is a state-of-the-art 
simulation that uses a coupled atmosphere-ocean general circulation model to recre-
ate the transient response of the global climate system to changes in the Earth’s orbit 
and greenhouse gas concentrations from the Last Glacial Maximum to the present. 
The simulation generates physically consistent spatiotemporal climate dynamics, 
driven by current best estimates of external climate drivers (e.g. Earth’s orbit, green-
house gasses, glacial meltwater flux). The model simulates these dynamics on a 
six-hourly timescale, and model outputs are archived at a monthly resolution. For 
this analysis, monthly TraCE-21k precipitation outputs were extracted from the 
3.75° grid cell covering Central Anatolia. This location was selected to capture cli-
mate variability typical for major Neolithic settlements in the region, such as 
Çatalhöyük, and for the eastern Mediterranean more broadly (Gauthier, 2016).

7.3.2  Estimating Drought Risks

Using the climate model output, I divided each model year into dry years and nor-
mal years. A dry year was any year where less than 300 mm of rain fell during the 
wet season (October–May), the threshold below which wheat crops will generally 
fail (Wilkinson, 1997), and a normal year was defined as any year above this thresh-
old. Given the modeled patterns of normal and dry years, the “objective” climatic 
drought risk θ̂  for any particular year was defined as the proportion of the previous 
50 years that were dry years:
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where Pn is the growing season precipitation accumulation in millimeters for year n.
The simulated risks of crop failure due to drought ranged between 10 and 46% 

during the period from 9.5 ka to 5.5 ka, with a median risk of 24% (Fig. 7.2). On 
average, a Neolithic farmer in Central Anatolia could expect their wheat crops to 
fail two or three times a decade, punctuated by even drier periods in which wheat 
crops could be expected to fail roughly every other year. The simulation also reveals 
a long-term trend of decreasing drought risks, in particular with higher drought risk 
in the early Holocene giving way to lower drought risk in the middle Holocene.

The TraCE-21k simulation confirms that drought risk in the eastern Mediterranean 
was non-stationary and, in fact, quite volatile during periods of climatic disruption 
in the early Holocene. This volatility would have had severe consequences for early 
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farming communities whose risk-managing practices depended so heavily on accu-
rately perceived local climatic risks.

7.4  Modeling Risk Perception

In order to properly manage drought risk, a farmer must first be able to perceive that 
risk. Yet, a farmer’s perception of risk reflects more than just the objective, empiri-
cal risk observable in the world around them (Tucker, 2007; Tucker et al., 2013; 
Findlater et al., 2019). Individual risk perception is inherently subjective, influenced 
by a person’s past experience of dry and wet years as filtered through memory, and 
can reflect varying levels of uncertainty. Likewise, the distribution of individuals’ 
perceived risks within a population influences the collective perception of drought 
risks and the potential aggregate societal-level response to those risks (Moussaïd, 
2013; Amaral & Javarone, 2020). But how best to model risk perception at the indi-
vidual level?

7.4.1  Prior Beliefs and Bayesian Agents

The human brain does not record every bit of perceived information in memory, 
rather it stores a “compact encoding” of that information which it uses for future 
decision-making (Gallistel et al., 2014). Integrating the tools of agent-based model-
ing and Bayesian probability provides an elegant means of representing this pro-
cess. A Bayesian agent is one whose subjective beliefs can be represented as a 
probability distribution over possible states of nature (Cushman & Macindoe, 2009; 
Pope & Gimblett, 2015). This approach has a clear computational efficiency for 
both modelers and decision makers. Even if real-world decision makers are not 

0.0

0.1

0.2

0.3

0.4

−9000 −8000 −7000 −6000

Years BP

Fig. 7.2 Annual risk of wheat crop failure due to drought from the TraCE-21k simulation (He, 
2011) aggregated by 50-year period. The dashed line indicates the level of risk beyond which one 
would plant barley over wheat to maximize subjective expected yields (after Fig. 7.1, given the 
payoffs in Table 7.1)
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Bayesian in a literal, mathematical sense, the basic algorithmic problems faced by 
the brain and the solutions which it has evolved reflect the same constraints on 
information processing in the minds of decision makers (Bonawitz et  al., 2011; 
Sanborn & Chater, 2016; Khalvati et al., 2019).

We can examine the dynamics of risk perception using a population of Bayesian 
agents that develop beliefs about the risk of drought through their personal experi-
ence of the weather. These perceptions impact their decision-making by altering 
their subjective expected crop yields from planting different crop mixes. Here, 
occurrence of a drought in any given year is treated as a draw from Bernoulli distri-
bution (i.e. a coin flip) with parameter θ representing the drought probability. The 
beta distribution is a natural choice for representing knowledge about probabilities 
because it is constrained to fall between 0 and 1. Hence, an individual agent’s prior 
belief about the plausible value of θ can be represented as

 
� � �� � �Beta , ,

 (7.2)

a beta distribution with the parameters α and β corresponding to the number of dry 
and wet years previously experienced by that agent. Varying these two parameters 
thus allows for the representation of a variety of different personal experiences of 
drought risk. For example, if an agent recalls having lived through 5 dry years and 
25 normal years, their prior belief about the chance of a drought occurring in the 
following year would be represented as a Beta(5, 25) distribution with mean value 
0.2 equivalent to the empirical drought risk ( θ̂ ) for that period.

Using probabilities to represent agents’ beliefs also allows for estimation of the 
uncertainty in those beliefs (Fig. 7.3). A simple Bayesian agent becomes more cer-
tain in their beliefs with age. For example, an agent who experienced 5 wet and 10 
normal years and one who experienced 25 wet and 50 normal years would both 
agree that, on average, droughts occur 50% of the time. Yet the latter agent would be 
much more certain in this belief because it is drawn from a larger range of experi-
ence (i.e. a larger sample size). We can thus represent the exact information content 
of each individual agent’s subjective experience of droughts using the diffusion of 
this prior belief. How, then, should an agent update its beliefs in light of new 
experience?

7.4.2  Bayesian Updating and the Weight of Past Experience

A Bayesian agent must be able to update its beliefs as it moves through time and 
observes each successive year’s weather. It does so by comparing the information in 
this year’s observation with the cumulative weight of their past experience. The 
agent combines its prior beliefs about drought risk with the likelihood of having 
observed a drought in the current year in order to generate a posterior distribution 
representing its updated beliefs about the world.
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Crucially, the strength of one’s prior beliefs determines how much weight is 
given to new information (Fig. 7.4). For example, assume two agents – one aged 15 
and the other aged 50 – who have only ever experienced a normal climate where 
droughts happen on average two out of every 10 years. The mean value of θ for both 
agents would thus be 20%, but the degree of certainty varies because the older agent 
bases its inference on many more years of experience than the younger agent. Now, 
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Fig. 7.4 Change in perceived drought probability in an older (50) and younger (15) agent before 
and after a 25-year dry period
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Fig. 7.3 Development of an individual’s perceived drought risk with time, assuming a fixed 
drought risk of 0.5. Beliefs are represented as beta distributions, and the increased certainty with 
age reflects the varying effective sample size of the beta prior
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assume the climate suddenly changes such that the drought risk is doubled to 40% 
for the next 25 years, not an uncommon occurrence in the simulation of early to 
mid-Holocene climate. Because the prior beliefs of the agents were so different, 
their subjective beliefs after the drought are also different even though both experi-
enced the same climate.

For young agents with weak priors, the information of each new year can thus 
strongly influence their beliefs. But older agents  – having more experience and 
stronger priors – will be less likely to update their beliefs when comparing the infor-
mation from a single year’s weather with previous decades’ worth of accumulated 
experience. Although neither agent may perceive the “true” climatic drought risk 
exactly, they nevertheless reflect perfectly rational beliefs about the world. Both 
agents have rational beliefs and differ only in their prior subjective beliefs. Their 
relative conservatism or flexibility are not biases, but rather varying perspectives on 
an inherently uncertain world.

As was the case in the game of fictitious play discussed in Sect. 7.2, a degree of 
conservatism is warranted when the environment is stable and risks do not vary. But, 
when the environment is volatile, the ability to change one’s mind is crucial 
(Gallistel et al., 2014). Being too inflexible in one’s priors can lead to decisions that 
are too optimistic when conditions really have changed for the worse. Conversely, 
inflexible priors can fail to take advantage of good conditions.

7.5  Risk Management and the Dynamics of Risk Perception

The previous example established some basic intuitions for how agents with varying 
subjective beliefs can perceive risk differently. But it represents an idealized situa-
tion where agents update their beliefs retrospectively after a many-year dry period. 
Farmers, on the other hand, must update their planting decisions each year and 
continuously monitor the weather around them. The transient, year-to-year changes 
in perceived risks can thus have major consequences for how a population responds 
during a dry period. How do Bayesian learners perform in such an uncertain, unpre-
dictable time?

To explore these dynamics further, we can simulate random sequences of wet 
and dry years and see how a population of Bayesian agents responds to this sequence 
in time. A 75-year period of low (20%) drought risks is punctuated by an abrupt 
25-year dry period during which drought risk doubles. Here, observations are made 
about the world sequentially, and agents must continuously update their beliefs. As 
in the previous section, an agent’s prior belief about drought risk is updated in light 
of new experience to generate a posterior perception of risk. Now, however, agents 
update their beliefs every year, and thus only a year’s worth of new information is 
incorporated into the agents’ priors at each time step. This learning process is itera-
tive, as an agent’s posterior distribution in one year becomes their prior for the fol-
lowing year and the updating process repeats itself. Formally, this iterative process 
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is known as “online” learning from Bernoulli observations, where “online” refers to 
the sequential, year-to-year update (Bissiri & Walker, 2010).

The results of this simulation reveal the importance of the subjective experiences 
of individual decision makers on the population-level perception of risk (Fig. 7.5a). 
In this learning environment, isolating signal from noise becomes critical for accu-
rately perceiving evolving drought risks. All agents begin the simulation with dif-
fuse subjective beliefs about drought risk, but as they begin to learn the collective 
subjective beliefs approach the objective risk level. The agents are slow to update 
their beliefs during the 25-year dry period because drought years, while increas-
ingly frequent, are still few enough not to outweigh their prior beliefs. Some agents 
may perceive gradual changes, but the population as a whole does not perceive the 
change in climate until more than a decade after it has begun.

The agents are even slower to realize when the dry period is over. Indeed, the dry 
period made a strong enough imprint on the population’s collective memory that 

Fig. 7.5 (a) Perceived drought risks in a population of Bayesian agents before and after a drought 
(grey band). The dashed red line represents the level of risk at which an agent is indifferent between 
planting wheat and barley. (b) Crop mix over time, calculated based on the degree of dispersion 
above and below the indifference level in a
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they perceive droughts to be much more probable than they actually are for decades 
after conditions have ameliorated. These biased perceptions have consequences for 
the  collective ability of the population to manage risk, because uncertainty in 
whether drought risks are above or below the indifference point informs the mix of 
crops to plant (Fig. 7.5b). Once again, the skewed perceptions of increased drought 
risks last long after the dry period ends, reflected in a much higher ratio of barley to 
wheat  – a more cautious crop mix than is “rational” given the objective risk of 
drought in the environment.

7.6  Conclusion

In this chapter, I explored the consequences of individual heterogeneity in risk per-
ception on the risk-management practices of a simulated Neolithic farming com-
munity. I used a long-term paleoclimate simulation over the eastern Mediterranean 
to estimate the changing risks of agricultural drought over a 4000-year time period 
spanning the early to mid-Holocene. Over this time, wheat crops would have been 
expected to fail from drought between once every 10 years to nearly once every 
2 years. Changes in risk of such magnitude would have severely impacted Neolithic 
agroecosystems in the long run but would have been difficult for any individual 
farmer to perceive in the short run.

To explore these dynamics, I simulated a population of “belief-based” Bayesian 
agents who use their subjective perception of annual drought risks to decide what 
mix of crops will best manage those risks. During periods of climatic stability, 
allowing past experiences to influence decision-making helps farmers minimize the 
impacts of predictable drought. But past experiences are less informative during 
periods of rapid climate change, and even farmers who manage risk “optimally” in 
light of their prior beliefs can experience food shortfalls. Cognitive diversity and life 
experience can be as or more important than the exact mix of crops planted for a 
population’s long-term survival under extreme uncertainty.

These dynamics have implications for understanding risk management and food 
production in the Neolithic. Two points arise from this model that clarify our under-
standing of the earliest farming communities in the Mediterranean basin and can 
inform future simulation work:

 1. Risk perception is difficult. The climate system is inherently chaotic. Annual 
forecasts are fundamentally uncertain, even in the era of modern supercomputers 
and numerical weather prediction. For prehistoric farmers, this uncertainty 
would have been an existential challenge. With the end of the Last Glacial 
Maximum and the advent of the Holocene, precipitation became increasingly 
volatile on multiple time scales. This uncertainty in the objective drought risk is 
compounded by uncertainty in individual farmers’ subjective perception of 
drought risk. Any individual would have experienced only a brief snapshot of 
this complex period. The rhythms of human lifespans are out of sync with the 
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centennial to millennial scale oscillations in the climate system, so even the pre-
dictive value of one’s own experience is itself unpredictable. This fundamental 
uncertainty would have influenced far more than the choice of which type of 
crops to plant and would have pervaded all kinds of decision-making under risk.

 2. Individual risk perception has consequences for collective risk management. 
Individuals of different ages may perceive the same dry period differently 
depending on their prior life experience. Younger individuals are more likely to 
perceive a run of dry years as a trend, rather than a temporary deviation from the 
norm, and older individuals are likely to do the opposite. By extension, the age 
structure of a population will influence how quickly it is able to perceive and 
adapt to a changing climate. For example, a young, fast growing population will 
have a different collective memory of a past drought event than an older popula-
tion. Likewise, famines, warfare, epidemics, and other crises that afflict specific 
age classes will alter the time horizon of that population’s collective memory. 
Individual heterogeneity in risk perceptions can thus play a key role in broader 
social responses to climatic risks.

Relating collective knowledge to individual perception and cognition is essential for 
understanding human behavior in complex social-ecological systems (Beratan, 
2007; Pope & Gimblett, 2015). Although social learning and cumulative cultural 
evolution have not been the focus of this chapter, these findings provide insight into 
the individual learning dynamics that underlay those broader social processes. This 
chapter has focused primarily on the physical and cognitive dimensions of risk and 
risk perception. The social context of risk and risk perception can be equally conse-
quential (Rogers, 1997). The balance of individual learning with social transmission 
determines the collective perception of risks and its impact on collective memory 
(Moussaïd, 2013; Candia et al., 2019). Our finite lifespans ultimately limit the skill 
of individual learning over the long term, and cumulative cultural evolution is nec-
essary for continued survival.
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